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ABSTRACT

In the book, "The Special Functions and Their Approximations,” a
class of rational approximations for the generalized hypergeometric functions
was developed, Now Iv(z) can be expressed in terms of a ofL ora lF1 .
Thus, corresponding to each form and a choice of certain free parameters
there is a rational approximetion for I,(z) . J. C. P. Miller has shown
that Im+v(z), m a positive integer or zero, can be approximated by use
of the recursion formula for I Y (z) applied in the backward direction.

If this scheme is used together with each of two certain normelization
relations, then rational approximations for Iv(z) emerge and the- . rational
approximations are identical with those noted above. The analysis leads to
a nevw interpretation of the backward recursion scheme. We also study a
third case for the evaluation of Ipsy(z) , m & positive integer, by the
backward recursion process which presumes that Iv(z) is known. In each
instance a closed form expression for the truncation error is developed
which leads to a very effective a priori estimate of the error. For each
case it is shown that the round-off error is insignificant.
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INTRODUCTION ' ‘ ' ‘ T ]

A

N

In my treatise on the speclal functions []J, a class of rational
approximations for the generallzed hypergeometric function th was
developed. These approrimations depend on a number of free parameters.
Since I (Z) can be expressed in terms of a HFy or a lFi there 1s_a
partlcular rational approximation corresponding to each of these hyper-
geometric forms and 8 choice of the aforementioned free parameters.
o \ :

The idea of u51ng the recursion formuls for I o(2z) in the back-
ward direction to generate values of Iv(z) is due to J. C. P, Miller kﬂ
1t is a very powerful tool and the notion has created considerable interest;
see [1, Vol. 2, pp. 159-166], [3,4] and the references quoted in these
sources. The Miller scheme togetner with two certain normallzatlon relations
alsoc gives rise to rational apprcximations.

In a conversaticn Jerry L. Fields conjectured that the specific
rational approximations noted in the first paragraph are identical to the
certain rational approximations which emerge by use of the backward recur-
rence scheme noted, in the second paragraph. In the present paper, we, verlﬂﬁ
this conjecture. In addition, we develop a new interpretation of the Mlller
method. Me also study, 2 third normalization technique which is sometimes
used with the backward recursion scheme. A z;osed form analytical expression
of the error for each case is derived. Thesé equations are valuable as they
lead to simple asymptotic estimates of the error which are very realistic
and easy to apply in practice. It is demonstrated that the .round-off error
is insignificant. The paper closes with some numerical examples.

In the main body of the raper, we find it convenient to deal with
the modified Bessel function I,(z) . The results are valid for all z in
the cut complex z-plane - g < arg z <m and in the cut complex v-plane,
larg v| < . 1In this connection, we shouid note that I_,(z) = I,(z) if
v 1is an integer or zero. Thus we suppose throughout that v 1is not a
negative integer. Actually, it is sufficient to have 0 < arg z' s n/2 in
view of the definition of I, (z) . Also it is sufficient to have R(v) > -1,
for if Iy_y(z) and I_,(z) are known,computations of I_ .(z)

m = a positive integer, can be done by use of the recursion formula for
I_m-y(z) . All of this not withstanding, it is convenient to restate some
of the key equations to facilitate application of our results to the Bessel
function Jv(z) . This is done near the end of the paper. . .




Case I,

Theorem 1.

or

and our usual shorthand notation for generalized hypergeometric series

RATIONAL APPROXIMATIONS FOR .I,(z)

We begin with' the representation

\ = (z/f2 v
‘ To(z) r‘(éf%)'o L (71322/4)

2/2)" ¥n - s (2)
1) - RWLJ.)h(z)  Bal2)s Fa(2) = )

D (-n), (n+))
:E: k K

= F.{ = +A+ H
*n(z) k:o (v+l) o 3.0( n+k,n_k k,l,X) ’
1
X=4/22 , A =vt28 ,6=0o0r6 =1,
hn(z) = 3F0(‘nsn+lylix) ’
hp(z) = (-)"n!(ntwr2-8) X" (F(-2n-146-v;x71) .

1

Here for convenience we introduce the notation

Grp)k

pq ' ( ) zf: (og)y k!

k=0

applies, see [1, Vol. 1, pp. 41, 42]. Further,

_ (z(?)vognp}
Sn(z) = T(v) s

4 = 1-6-R(v) if -1 < R(v) € 16 , y = O if R(v) 2 16 ,

(1)

(2)
(3)

(4)

()

(6)

(8)
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tn(z) = (-)Pn!(ntvie-6) X [1ro(al)] (9)

whence

(=)P/2) P r(at)
Ba(2) = T Dnir (o)

o) [ro(a 1)] , R(v) > -1,  (10)

and so, for z and v fixed, R(v) > -1, the approximation process is
convergent.

Proof: Equations (2)-(3) follow from [1, Vol. 2, p. 96] with

a=0,f=8=0,P=0,q=l,pl=v“l,
=1l -8 ,B=v,A=v2b ,86=0o0rd=1,y=1z2

and 2z replaced by z2/4 . Notice that the izF; series for hp(z) in
(5) turned around is the alternstive form for hp(z) in (6).

Equation (8) follows from [1, Vol. 2, p. 103] while (9) follows
from (6), see also [1, Vol. 1, pp. 259-261!, and (10) is now cbvious,

Remark: In the proof developed in the cited source, it was necessary to
suppose that R(v) > -1 . Later, we present a new formulation of the error

which shows that v is unrestricted save that v is not a negative integer.

So throughout this work v is arbitrary except as just indicated. Compu-
tation wise, the exception is no burden since I_p(z) = I(z) .

Theorem 2. Both §,(z) and h,(z) satisfy the same recurrence formula

hp(z) + (C1+XD)hp_y(z) + (CotXDo)h, o(2) + Czhy, _z(z) = O,

_ (enh-2)(n-a+1) _ n(2m -2)(2n+) -1)
1~ (2nta-4)(nta-1) °> 2~ n+y-1 g
_ =(n-1)(n*2)-4)(2nt+)-1) _ ={(n-1)(2n+y-2)(2n+\-1)(n+r-3)
C2 = Tna-1)(n*r-2)(2n*A-5) * D2 ~ (n*\-1)(nr-2) ’
3

-




-(n-1)(n-2)(2nt)-2)(2n+) -1
3 “(2ntr-5)(2ntr -4} (ntr-1)(n+Ar-2) °

(11)
where nz2 3 .
Pro..: See [1, Vol, 2, ch. 12].
Case II. Next we consider
_ (zf2)%" Lot
1,(2) = (1) 1F1(vH332vt1;-22) (12)
Theorem 3.
4
(z/2)Ve? >n(2) Wn(z)
I,(z)= + Vp(z v.(z) = 13
\)( ) I‘(\)+l) gn(Z) n( ) b n( ) gn(Z) b ( )
. sn— () (n+2vt2)y (V) -n+k,meovierk, 1] 1
*n(z) = & (2vt1) (v3/2) k! 371 \w3/2+k 2z )’ (14)
-n,n+2yt2,1 1
gn(z) = 3F1<\)+3/2 "2—z‘> ’ (15)
or
n!(nt2y+2) 1
n -n-v-3
gn(z) = n 171 (- -2y-1 22) ) (16)
(2z)B(v+3/2) 2n-2v
Further,
v
W (g) o L2/2) e?o(n”)
n(z) - F(v+l) ’
p = 1-2R(v) if -1 < R(v) € 3 . w = 0 if R(v) 2 5 . (17)
Also,

n!(n+2v+2) e”

g,(z)

(/1) + (22/32)@;@1 + o(n"s)] ,» (18)
(ntv+l)

T (e2)(wrafa), T et




_ (2/2)%(22)"(v3/2) 0(x")

r(v+1)(n+2v+2) n! » Rlv) > -1, (29)

Vn(z)

and for z and v fixed; R(v) > -1 , the approximation process is con-
vergent,

Proof: Equations (13)-(15) follow from [1, Vol. 2, p. 96] with

a=0,f=g=0,p=a=1,a = w5, p; =2vl,
o =1,B=2v,)=2u2 ,¥y=z

and z replaced by -2z . Equation (16) is equation (15) turned around.
Equation (17) comes from {1, Vol. 2, p. 103] while (18) comes from (16),
see also [l, Vol. 1, pp. 133, 259-261|. Thus (19) is at hand.

Remark: See the remark after Theorem 1.

Theorem 4. Both £,.(z) and g,(z) satisfy the same recurrence formula

3

en (2z) + (E)*2F /z)g, ,(z) + (Byt2F,/2)g, ,(2) + E.8 4(z) = 0,

_ =(n*v)(nt2v-1) _ 4n(ntv)

17 (ntv-1)(nt2vrl) 2 F, = nt2y+l °

-n(n-1) -4(n-1)(ntv)(n+2v-1)

EQ = (n+gv)(n+2V+1) 3 Fé - (n+2v)(n+2v+l) ’

B = (n-1)(n=2)(ntv)
3 (n+2v)(ntav+l) (ntv-1)

where nz2 3 .

Proof: See [l, Vol. 2, Ch. 12].
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BACKWARD RECURRENCE SCHEMATA FOR GENERATING I,(z) ]

The technique for generating Iv(z) by use of the recurrence
formula for I,(z) employed in tha: backward direction is as follows. The
recurrence formula

2(mtvtl)

om,v(2) = z omr1,v(2) ¥ omeo o(2) (21)
is satisfied by
I+o(2z) and ei(m#v)“xm+v(z) R (22)
gnZE) -
Knto(2) = sin(m#v)nl;-m-v(z) - Im+v(22] . (23)

In this work, we always take m & positive integer or zero. For later con-
venience, we also record the formula

4 1 vt2) 2 2 1
¢m,v(z) - £E+V+Z%Km+ )‘+-%35553§%¢m+2,v(z)-?£§%E§72.¢m+4,v(z) - (24)

Iet N be a positive integer and consider that solution of-(21),
call it ¢£N3(z) with m < N2 such that
k1

(V) ()

Pw2,y 05 PN+l,v 1. (25)

Y
Clearly ¢é¥6(z) is a linear combination of the solutions (22) subject to
the conditions (25) and we readily find that

(N ~in(N+1-m)
m!Il

,3(2) - Z[Im+v(z)KN+2+v(z) te Km+v(z)IN+2+v(zi] (26)

in view of the Wronskian relation

Iv(z)Kv+1(z) + Iv+l(z)Kv(z) =1/z . (27)
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Suppose that we are given the normalization relation

x

8(2) = 0wl (2) - (28)
Put
(W), | _ 8l oy
8 /(z) = (z) (29)
z E;% Py sV
and consider

imv( ) = e(N)( ) y m< NH1 (30)
We can now prove

N
Theorem 5. lim in(#\))(z) = Im+v(z) , 0sm< N1 . (31)

N—oo

Proof: Using (26) and (29), we can write

vm Dpryro(2)Kn (2) ]

9(2)[1,,&\,(2)-(-)

(N) Ky+y+2(2)
imeo(2) = §7 B ’ (32)
Z;Owkxm(z)-( N &:Z )g; (=) oKy (2)

and the result follows from the known behavior of the Bessel functions
for large order. That is,

mtv
! ZE)
Imro(2) = r‘?nri-\&l) [l+0(m'1)] ’ (33)

Karo(2) = 3(2/2)7 rm+v) [1ro@™)] . (32)




ol

1 e AN

We next show that Q(N)(Z) = N+1,N,N-1,. . . can be repre-
sented in terms of a generallzed hypergeometrlc polynomial. We then prove

that for two specific choices of 6(z) , the series (29) can also be expressed

in terms of a generalized hypergeometrtc)polynomial and further, for the
two choices of 6(z), respectively, (z) and the rational approxima-
tions *n(z)/hn(z) and &,(z)/gy(2) respectlvely, are equal. Actually,
we first state and prove theorems for the Case I situation in some detail.
The corresponding theorems for Case II are stated and proofs are omitted
as the details are much akin to their Case I analogs.

Another choice for 6(z) previously discussed in the literature
is I (z) . We call this Case III even though the corresponding 1&?&(2)

(N)(z)Iv(z)ﬁpO (z) 1is not a member of the family of approximations from

which Cases I and II were derived. We defer further analysis of Case III
to a later discussion when we determine closed form error expressions for
all the cases.

HYPERGEOMETRIC REPRESENTATION FOR q)élN)(Z)

Theorem 6.

) (2 =1, 9" - 2wl

b

(m) (z) = 1+ 4(Nrv)o w(N) (z) = 4(Wy) 8(N+v-1)z

v+ I [
N=1,v Z2 N-2,v z 23

>

cp(N) (2) = 1+ 12(N+v-1)2 . 16(N+v-2) ,
N-3,v 72 24

(N) 6(N+v-1) 32(Nv-2)z  32(Nv-3)g

ona,9(2) = I 5 ’
4

Py-s,0(2) = 1% 2 T 7T ’

(N) g(wv-2) B0(Nv-3)z  192(Ntv-4)5  128(Ntv-5),
x-6,v(2) = ¥ R ¥ 7 ’
-6,V z z 2 .
etc. (35)

k.




nk-ed (2n-k-m+l+v+(15)e), m”](l&l-m-eﬁ )Mn(ml)nxm

(N) -
¢2n-2k+e,v(z) = (4/2) E;g (em+2n)!
=EE(I("’I—G)(2n-k‘l'l+\a)]‘n €d -k,kt1+1-ed ,k-2n-v-(1-5 )¢ ,2n-k+2+y+es -6
2 ] aF\ L X/4
X=4/2° ,N=2n§ ,6=0o0rb6=1,¢=00re¢=1,
M= e+ (1-e)(1-8) , (36)

where 6 = O or 1 according as N is even or odd, respectively. Also

on-m+1-5
(M) 5y - (/)7 r(ema-sty)
cpm,v [(mtvtl)
X [ _m-l‘“f’J melts  mt
P ~nt- -n
oF3 e e ), (37)

~2n=1+§ -v,mty*tl, -2n-1+5+m

where [p) is the largest integer < p .

Proof: By induction: The Table (35) is readily developed by use of (21)
and the starting conditions (25) and it is easily verified that (36) gives
the polynomials listed in (35). Put (36) with 6 =1 and ¢ = O in (24)
(in (24) replace m by 2n-2k ) . Then after some algebra, it is seen
that the coefficients of like powers of =z vanish, which proves (36) for

6 =1 and € =0 . To get (36) whend = ¢ = 1, use (21). The case 6 = 0
is similar and we omit the dectails. Finally, (37) is just a special case
of (36). To connect these two equations, we set 2n-2k+¢ = m and choose

€ = 0 or 1 according as m is even or odd, respectively.

Remark 1: We have given more polynomisls in (35) than are necessary for
the proof. The additional entries are given for convenience.

Remark 2: If in (36), € =6 =1, and if k and v are replaced by k+l

and v+l , respectively, then we get (36) with ¢ = 6 = 0 . Again, if in (36),

€e=0 and 6§ =1, and if v is replaced by v+l , then we get (36) with




HYPERGEQMETRIC REPRESENTATIONS FOR 8 M)(z)

AND THE FORMS FOR iﬁ'\),(z)

Case I. Consider the normalization relation

(z/2)° 2\!: (= )E(2k+v ) (It v)

r(vl) = T(vtl)k! Iogey(z) » V7 O,

i

8(z)

©

R OREDN (- Ip(2) s v=0 (38)

which is given in [1, Vol. 2, p. 45, Eq. (2)] .

Theorem 7.

0 (_)E(2ktv)r(k+y
oMz) = 5 ST 0 o)

k_

o

= (2/2)1—6 (-)n(th)n+l—6 3Fo(-n,n+1,l;X)

(v )
(/o) LD M1t ()

X=14/22 ,N=2n6 , 1 =v25 , &£ =0o0rs =1, (39)

Proof: We consider the case 6 = 1 only as the details fcr § = 0 are
similar. We demonstrate that like powers of X in the sums on the first
two lines of (39) are equal. Thus we must show that

he(v) = Be(v) (40)

(=) (2r+)T(r+v) (k). (s+1+v),.

k
hy(v) = ;é% by s bp = riT(v1)(kt1+v) . (-8)p ’




(=) (s-k) ! (w+1),

Bk(v) = s! H

n-m=%k, nmm=s |, (41)

The case k = 0 is trivial. Assume k> 0 . Clearly By(v) is a poly-
nomial in v of degree k which vanishes if v= -u, u= 1,2,...,k . A
straightforward calculation shows that b +b, .. = 0 whence hy(v) also
vanishes if u = 1,2,...,k . Next multiply both sides of (40) by
(ktvtl)_1 . Then (40) and (41) take the form

he(v) = Bi(v) , (42)
x K o 4 () (ro)r(rev) (k) (s+1+v), D (2ktv)
hk(\’) = IZ:::O r’ b:l:‘ = r3I‘(v+l)(-S)rr(k+l+v+r)
* )¥(s-k) T (2t
By (v) = ( ;:r(3+1§ ) (43)

Now each side of (42) is a polynomiel in v of degree 2k-1 and By(v)
vanishes for u = 1,2,...,2k-1 . Also hf(v) vanishes for u = 1,2,...,%
If v= -k-v , v=1,2,...,k-1 , then bh = 0 for r = 0,1,...,v-1 and
iyt bg.j =0 for J§=0,1,...,(k-v)/2 . So hf(v) end Bk (v) have
the same zeros. Further, it is easy to see that the coefficients of V™7
on both sides of (42) are equal. Hence hf(v) = B;(v) and so also

hy(v) = B (v) for all values of v which proves the theorem.

Theorem 8.
n
oM(z) = (2f)* LMD -y (o)
N=2nd ,86=00rd =1 . (44)

Proof: By induction: Using (4) and (37), we can readily verify the state-
ment for n= 0, 1 and 2 . A straightforward analysis shows that both
sides of (44) satisfy the same recurrence formula which is easily deduced
from (11).

11




Thus the result produced by use of the recurrence formula for Iv(z)
employed in the backward direction together with the normalization relation
(38) and the rational approximation given in (2)-(5) are identical

case II. From [1, Vol. 2, p. 45, Eq. (5)], we have the normalization
relation

vz ©
2 2kt2v)T (let2
a(z) _1(“%{:1%)8 -5 ! I"(Z\)ﬁg)k!v) Igeo(2)s v 7 0,

=e®=1Iy(z)+2) TI(z) ,v=0. (46)
k=1

Here to avoid confusion, we replace ® by ) in the notation of equations
(28) and (29).

Proofs for Theorems 10, 11 and 12 given below are ekin to those
for Theorems 7, 8, and 9, respectively, and we skip the details.

Theorem 10.

M1 (ok+ov)r(kroy)
a®e) = > e cpl(crf\),(Z)

12

e £2 WIS RS Y GG R AT
From Theorems 7 and 8, and (32) and (37), we have
Theorem 9.
N .
o, 0zl M(z)  yp(z)
1 z = =
N NE) PR E)
[n m-l+6] m-1+5  m+s
Rl <‘n+_2-"n+_2- 2
+
(N O(ZXP,SD,I\),(Z) (22} 23 -2n-1+6 -v,mtvt1,-2n-1+6+m
1m+\)(z) = Q(N)(Z) - ﬂ(m_\’_{_l) o
! OF?(-En-l+6-v;z /4)
(45)




(242)py o [-N-1,wow3,1
1 -1/2z

= T(w1)! V3 /2
!
(2v+2)
N+1
=T ewal2) (47)
Theorem 11,
2vt2
(N)(z) = i“""z‘.h"-ti 0. (z) (48)
®0,v (w1): Fpg'® 2
and as & consequence of (44) and (48), we have
1.6, \n
o2y oy (2) _ /T g
(en+1-5)! n! n ? )
(49)
Thecrem 12,
.(N)( ) ‘PSI:I\),(Z) On+1(2)
i z) = =
v Q(N)(Z) gN+l(z)
[n m-l+6] m=-1+6  mtd
. > U 5
(N) ) mty z 2°3 z
(N) P, (2 (z/2) e -2n-1+6+m,mtv+1,-2n-1+ -m
{00 = S0, = Tl
p 20*18 ~2n-3 /2yt oo
11 ~4n-3-2v+28
(S0)

A FURTHER INTERPRETATION OF THE
BACKWARD RECURRENCE PROCESS

From Watson's treatise on Bessel functions [5, p. 295], we can
write

Iont2-s+u(2) = Tong ,w2(2)1y(2) = Tonryog o+ (2)Tgea(2) S (51) i

13




(ORI
2n+1-5 , v+l Po,v

T (z) , N=2n$, 6§ =0Qors =1, (52)

where ¢(N3(z) is defined by (37). Consider the case § = 0 only. We
put (51) in the form

(z)
Iy(z) _ _Tonrwra(®) _ Znn,yn’®
Ivrl(z) - (2) = Iv+1(z)T2n,v+2(z) » (=) = Ton,wrofz)  ° (SS)
Further, we can put
En(Z)
) - @
(2/2)" Ny 1 (/2" 1y o
Eq(2) = T(2nrvr2) > Tnlz) = T(2ntvt2) +(54)
Now it is known [5, p. 302] that for z and v fixed, z # O ,
lim Ep(z) = Iv(z) s lm F(z) = I,9(z) . (55)
n—swo n—>wx
From (44) and (52), we have
n 2n
(2/2) 4n(2) (%(/2) hg(2)
En(Z) Ln(z) T(Vf'l)hn(z) s Ln(Z) - n!(n+v+2)n s (56)

where y,(z) and h,(z) are given by (3) and (5), respectively, with
6§ =0. But for z and v fixed, 2z # 0,

Um Ip(z) =1, (s7)
n—>wo

see (9). That is,

. 7O X B 7N T
lim En(z)— limmm~ 1lim

- n-—>

= Iy(z) . (58)

n-—-> F(WI)G(N)(Z)

14
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A similar analysis can be made for Fn(z) . Also, a like study can be done
for the Case ]I scheme. We omit the details. ‘ '

Further, the above shows that the backward recurrence scheme for
the computation of 2I,(z)/Iy+1(2z) 1is the same as the well-known truncated
continued fraction representation which in turn is the same as the main ,
diagonal Padé approximation for this function. o |

ERROR ANALYSES , i

1

In the first part of Shis section we dévelop closed form repre-
sentations of the error in 1m+ (z) for cases I-III under the assumption’

of exact arithmetic. This type of error arises because N is finite and

is called the truncation error. From each analytical representation of

the error, we deduce an asymptotic estimate of the error which is very
realistic and easy to aprply in practice. The results for Cases I and II  ‘
when m = 0 are much better than those given by (10) and (19), respectively.
Further, for Cases I and II, if 2z and v are fixed and n is sufficiently
large with respect to m , the relative error in the approximation for
In+(z) is essentially independent of m-

{ X
I
!

An analytical formulation of the round-off error is developed in
the latter part of this section where it is shown that this sburce of error
is insignificant. : i !

We now turn to a study of the truncatioﬁ errors.

Case I. Let

g™

mv

(@) = (@) - 1@ (s9)

(W)
vhere i, .(z) is given in (45).

15




Theorem 13. If v 1s not a positive integer or zero,

. 2nt2
‘ - 1 1
oF1(-2n-14 ’“;%2/4)Eaglf3(z) . l(z(z+§)r(2n£én.;+3w) o "(Z)lFa(n"?,-ma Wl 4)

_ (Pn(zfp)PHEAY

F(2n+2.5+v) sin vm J'—m-\:(z)l2n+2-{5+\;(z)

(=)™ (2/p)°m 20"
; = r(ent2-8+v) Iontog+y(2)Kpey(2)

2n+2-6+v
(Pr(z/)
.t T(enf235v) sin oy loproog o (2T (2) - (60)

y
]

. Equation (60) can be rearranged so that with the aid of L'Hospital's theorem,

we can get a representation of the error when v becomes a positive integer
or zero. We do not give this result. However, for arbitrary v , we always

have ‘ ;
22/4>

| sy = (/2 (2 5 1
OFJ]T(-2n-l+6'V;ZE/4)EI$lI,\I\))(Z) = L (g{))ﬁ-(grﬂ-él-f-v) V) Im+v(z)lFS<n+2,-n+6-\)

: +5 2n+2.-5+y | :
2(-)" ° (2/2 | of(z/2)22
* )F(Ef}fé.s)+\)) 12n+2-6+v(Z)Km-Fv(Z) + r(emg_éégrggnzs_s_*v) ) (61)

where s = nd+v(s=) :T v is (is not) a positive integer or zero. Clearly
the backward recurrence scheme is convergent. Further, for n sufficiently
large, n >>m , the relative error is essentlally independent of m. For
convenience in the appllcaflons we record the formula

(P(2/2)?™Pr(nr1bre) o
Ezglf\)a(;z) T (ntl)ir(2n*2-+v) > 1m+\,('z)[l+0(n 1)]

__( )m+6( /2)21'!"2-6"'\)
T(ent2-5+v) oo g +o(2 e (2) (62)

i
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Proof: We have need for the formula [l, Vol. 1, p. 216]

att
Ia(2)Ip(z) = F(iflif(b+l) oFy (8+1325/4) oF, (b+152%/4)

T ki <<a+b+1)/e,(a+b+e)/zlzg) (63)
= T(atl)r(b+l) 2 3\ atl,b+l,at+b+l ’

where it must be understood that none of the numbers atl , b+l , atb+l
is a negative integer or zero. Now let

An(z) = oFy (mrvl;z2/a) F) (-2n-1+6-v;2°/4)

_ T(mtv+1)r(-2n-1+6 -v)
= norsrn Imro(B)T_on 145 (2)

(z/2)

) 2nt2-6 -m
_ (Pt (a/2)
r(znt2-6+v) sin wn

Tireo (20T on 14 -y (%)

N ok
= ZE: a2 . (64)
k=0
Then
ok | -1 -k,2n+2-§+v-k
a-k = [2 kk.(-?n-l+6 ‘\))k] 2Fl<m+\’+l l
m-l+6\ ( mt§ \
-n + ! -n
) (n 2 Jx\" "2 /Jx (65)
(-2n-146 -v) (m+y+1), (-2n-1+6+m)y ’
whence
B.k = 0 1) k = l + [ - m-;+6] ] . 9 2n+1-6-m ]

17
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m+d
(=) r(mtv)(mvtl)
+2.5-m 28 -
S+omtong -m p4n+a-26 anr(2n+2-6+v)1‘(2n+3-—6+v)
<n Lﬂ) (n- 2 43
T2 2 T2 2
X k\ 'k ,k=20. (66)
(en+3-5+v), (1-m-v), (2n+3-5-m) k!
k k k
Thus
et/ melts L mhs
> 2 ° 2 2
An(z) = AFz z
=2n=1+¢& -y, Myt 1, -2n-1+5+m
) -5 -
+ ) "F(m*\“'l)(z/e)emg §-m I (2)1 (z) (67)
r{ent2-5+v) sin vm —m=v 2nt2-b+y ?
and in view of (23); we have the alternate representaticns
2nt2<5 -m
_ (=Par(mvr1)(2/2) 2, .
An(z) = r(2n+2-6+v) sin v Imo(z) |- m (-) Kont1-5+u(2) * Tone1g+y(2)

2 2 2
“2N-1l+§ -y, mrvt1l,-2n-1+5+m

i

oF

[n-—-——-m- 148 ] .n;{-m-—.._.-—n:l:"6 . -n+m
3

, () nrGurwr) (a/2) 770

[(20+26+v) sin v 12n+2-5+v(z)[f, (=) Kty (2) + Im+v(z)] ,

(68)

As a remark aside, the combination (26) and (68) yields (37) and so we have
an alternative proof of (37). Using (45), (59) and (67), we can write

18




Fo-en-16 0322 /)E)(2) = 1, (2) B (2n-16 -v322/e) |

mtv
(z/2) .2 (DR 148 —g g2
" T(mrer ) oFi(nﬁ\&l,z /4)0F1( 2n-1+6 -v;2°/4)

2nt2<§ -m
(a) T(mtv+l)(z/2)
111(2n+?-6+\a) sin vy I-m-v(z)12n+2_5+\,(z)] s

and since

(-) l"(n+l-6+v) 1
an(-Qn-l+6-v,z /&) - oF1(~2n-1+5-v;z 2/4) = (nr1) T (en25+9) 1 F, nt2, it -y

1),
(69)

we readily find the first part of (60). The second part of (60) follows
from (23) or it could have been found by repeating the above analysis with
the second equation of (68) in place of (67).

Next we briefly examine the situation when v 1is a positive
integer or zero. With v = rte¢ , the F, on the right-hand side of (80)
can be expressed as

o 2k
1 5+ (z/2)
lFE‘(lT* 2,-ntb -y |22/4> Fn I.<n+2 -nts -vl 22/4) * Z (m+2), (-m+6-v),

k=n-5+r+l k(

nt+1+5 2ut2.25+2r
- gl |22/4)+ (=) o(n+l)!(z/2)
172 n+2, -1+ -v i

sin nvl(2n+3-5+r)r(nt1-6+v)r(l-¢)

1 l 2
F z /4) . (70
:><: L 2(2n#3-6+r,1-e )

19
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The first term on the right-hand side of (70) is defined when ¢ = O .

When the second term on the right-hand side of (70) is multiplied by the
coefficient of the F> in (60) and the result is combined with the term
involving Ip+,(2)Iopep_p+y(2) in (60), it will be seen that one can pass

to the limit as e¢—0 . The final expression is not of great interest

and we amit further details. Equation (61), which is important for practical
considerations (see later numerical example) readily follows from (60) and
the above remarks, and (62) is but & simplified version of (61),

Remark: et v n and z be fixed so that EéN)(z) is a function of
m only. Then ESN (z) satisfies the recurrence formula for Pm, v(z)’ see
(21). This is evident from (30) and confirmed by (60).

Case II. Let
Fga(z) =1, (2) - 1§1f3(z) (12)
where 1&?3(z) is given in (50).

Theorem 14. If neither v nor v+% is a positive integer or zero, then

-z F2n+l-6<-2n-3/2+6 -v| ) (M) )
¢ 171 -4n-3+25 -2v vz

2nt2-5

. (2z) (v+3) Jenro® Imfv\z) $-v,1 lez)
(2n+2-8)!(20+2-6+2v), o 2\2n+3.5 , -2n-1+5 ~2v

( )6 (z /2)2nvh-6+vT e v(z)12n+2-6+v(z)

r(2nt2-6+v)sin vr (72)

which is the same as the right-hand side of (60).

If v+% is a positive integer or zero, call it r , we have

20
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rmear S, -y €

e 4f

e T R AR

1
-4n-4+2§ =21 mtr+z

-z 2+l (-2n-2+6-r |2z>F(N) (2)

2nt2-8
(2z) (rtl)opso-s e %1 1(2) -T,1 ‘22)
mr+st T 27 2\ont3.5 , ~2n-245 <2r

= +
(2nt2s ) (2n*3-5+2r), . ¢

§+r+l 2n+5/2-§+r
(-) m(z/2) / I 1 o (2)
on+r+5/2-6 [ I (2) - I ' )]
* T(2nt5/2-5+T) bplpeped(2) = T g op 22
r=0,1,2,.0. yup = 1lifr=-1,p =2ifrz 0. (73)

In particular,

5, , 3 -2
(N) (') (TT/ZZ) e Izn.'.s/g__s(z)
o

]

-2 Ko 3/2-5 (2)

4n+3-28

() (anz)%e ™ (2/2) [roa™h)] . (79)
[(2n+l-6)1]2

As in Theorem 13, (72) can be rearranged to get a representation for the
error when v 1is a positive integer or zero. This result is omitted.
However, for arbitrary v , v # -3 , we always have

-z _2n+l-b -2n-3/2+6-v‘ ) (V)
e 1f (—4n-5+26 20122/, 3(2)

(227720 (o1
_ z V2 onres -z 3-v,1 I?_z)

t
i (env2-5 ) (2n+2-6+2v) 5 40 6 ¢ IMV(Z)EFE(Em‘S-&,-2n-1+5-2v

2nt2-5+v

m+§

+

o((zle)en)

Y Fena-b+v)r(entib+v)

(75)

2l




where t = v-3(t=2n+1-6+2v) if v is half a positive integer (is a posi-
tive integer or zero) and where t = » for all other v . Clearly, the
vackward recurrence scheme is convergent.

Further, for n sufficiently large, n >> m , the relative error is 1
independent of m . For convenience in the applications, we record the k

formula
2nt2.§ 1 -2
—(22) (\)+§) e )
2n+2-6 (
R (2) = T 5): (2n+25+2v) WOLERE) ‘
m,v (en*2-5)!(2n Vontos - .
+§ 2n+2-5+vy 3
2(=)"" (2/2) L :
* I -z.(76 1
r(2n+2-5+v) 2nr2-p+u(2)nry(2) 5 v 7 -2 . (76) |
]
Proof: let 4

(o) = 162 szh%{fpﬁmmwb%=iﬁﬁ.un
. k=0

]_ 11 Zmtoytl ! 4n-5H05 -0y

In view of (1) and (12), B (2z) = Ay(z) where An(z) 1is given by (64).
Hence by = 0 for k odd and bpy = ax where a, is given by (65)-(66).
The analysis proceeds as for Case I and we find (72). Notice that the
right-hand sides of (72) and (60) are identical.

For the proof of (73), let Vh,v(z) be the entire first term on p
the right-hand side of (72), that is, the teym involving the oFo . Let :
v = r+%+e s r=0,1,2,... . Then we can write

1 1
E-V,l | :
Vm,v(2) =Cy(2)(r*1*e)onra_¢ [2"5(2n+3-5,-2n-1+5 2y 22)
emt2sver - :
DI D St B
k=r+1 k=2n+3-5+2r :

(22 )eme-ae-zImw(z) (3-v )k

g (Z) = ~ ] > c = y
v (2n+2-8):(2nr2-5+2v), ., o k  (2nt3-$ ) (-2n-1+6-2v)

It is easy to pass to the limit when ¢—>0 and (73) readily follows.

22
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Now for arbitrary a and b ,
3
aI_%(z) + bI;(z) = (2/nz)°(a cosh z + b sinh z) ,
3

Further, from (16), with n replaced by 2ntl-§, see also (17), and
v = -3, gn(z) reduces to

L1\ -3 2

Use these data with r = -1 and m= 0 in (73) to get the first line of
(74). Derivation of the second line of (74) is trivial and details are
omitted. Since

1 #
I_y(z) = (onz) 2e%(1+e%) '
, -z (N) . . 5
it is easy to show that (2nz)2e i1 (z) is the main diagonal Padé approxima-
tion to 1+ e™2% . When allowance is made for a change of notation,(74)

is a previously obtained result [1, Voi. 2, p. 74, Egs. (34), (35)].

When v =rte , r a positive integer or zero, we can rearrange
(72) after the manner of the discussion surrounding (70) and use L'Hospital's
theorem to get the limit as € —0 . The result is not of immediate interest
and we omit details. The statements (75) and (76) are readily derived and
here too we skip details.

N)(z) with n, v and z fixed and m variable satisfies the

Remark: F(
—_— m,v

recurrence formula for e v(z) » see (21). This feature is clearly depicted
3

by (72). In both (62) and (76), the term involving Kuy(2) 1is of lower
order than the term involving Im+\,( z) . Neglecting the former term in each
equation, we have




Theorem 15.

ES\)»(Z) ()™ T (w15 +v) (2nt2-5 ) !22\’-1(%)“(2/2)6ez bro(n™1)]
Fir’i\))(z) - (n*1) T (2nt2-5+2v)
. ntl 5 z
) (-) (2)V(Z/2) e [1+O(n‘lﬂ - # _% . (78)

nv+6

This shows that there is little difference in the accuracy of the
two schemes for the evaluation of Im+v(z) . Computation-wise, if the

backward recursion scheme is used, Case I requires less operations since
the associated normalization relation, see (38) and (39), uses the sequence

(W)

LW v(z)} s K= 0,2,4,.0. w@%le the Case II normalization relaticn, see
3
N
(46) and (47), employs ¢£ 3(z)r s k=0,1,2,... . Also to get Iv(z)
9

by the Case II scheme, e? must be evaluated. On the other hand, if |z|

is large, R(z) > O , one often wants not I,(z) , but e”?I,(z) . The

latter is automatically furnished by the Case II technique. It appears that

for the same n , the Case II procedure might be more accurate than the

Case 1 scheme even for moderate values of |zl , R(z) > 0, in view of

the presence of eZ in the numerator of (78). Also, Case II is favored

when R(v+6) < 0 . Improved information cannot be derived from (78) as 1
the estimate is for fixed m , v and 2z . For error analyses it is sug-

gested that one use (62) or (76) as appropriate., Further discussion is

deferred to a later part of the paper where numerical examples are presented.

If 2z is pure imaginary and v is real, then z-vlv(z) is real
and definitely the Case I procedure is better than the Case II scheme since
the former requires real arithmetic while the latter demands complex arith-
metic,

If only I,(z) or only e’zlv(z) is required, use of the
rational approximation scheme or the equivalent backward recursion scheme
demands about the same number of operations. In the absence of a priori
estimates of the error, the rational approximation scheme employed in the -
following fashion is preferred. It is sufficiunt to consider the Case I
situation. Compute y,(z) from either (3) or the combination (37), (44),
and hp(z) from (5), for n= 0,1 and 2 . Compute subsequent values
of yp(z) and hn(z) by use of the recursion formula (12). Comparison of
¥,@/h,(z) with *n+1(z)/hn+}(z) affords an estimate of the error. If

one requires Iy, (z) or e Iy ,(z) for k= 0,1,2,...,r , then obviously
the backward recursion scheme is highly advantageous.

2k
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Case 1II. Consider

6{(2) = 1, y(2) - 100(2) (79)
(W)
1(N)( ) IV(Z)mm,V(Z) (o)
z) = ’
il coc()lf\),(Z)
where wéyz(z) is given by (37).
Theorem 16.
() gyl (2)
G(z) - ™
il ‘PO,v(Z)
5+m ont2-m-b
- mt z/2
- ?§2n:g£6{v; 12n*2-é+v(z)Lm,n(z) ’
2 |
2
QFB lev-m,vtl,l-m §
]'_m’ (z) = ~1 51 F » 0<ms< 2n+lsp (81)
’ Fb-é—e—l<‘“*?’ - | 2
2°3 -2n-1+§-v, vt1,-2n-1+5

and it is iﬁiar that the computational scheme is convergent. Further, if
we treat Gm v(z) with n, v and z fixed and only m as a variable,
5

m
then (-) GéNz(z) satisfies the recurrence formula for v(z) , see (21).
b4 ’

Thus

(N) (N)( y - 2(mtvtl) (W)

Gm+2,\;(z) = Gm,-‘;\z Gm+l’\)(z) ’

6+1

(') I + (Z)
G(()N)(z) -0, 6"z - e (82)
v I3Y wo’\)(z)

25




Finally, for convenience in the applications, we record the formulas

PJhmJ m-2

pl 2 {a 27 2 42
2n+4-26 +2v-m 2”3 -v-m,vtl,l-m
(N) ( ) _[2 r(m+V) [l+0(n“l)]
Gm,v(z) T(2nt2-5+v)r(2n+3-5+v)r(vtl)
1,(z2)
v
(82)
) ont 426 +v-
(N (O™ (z/2) " (nrtv) 10 -1
Gpo(®) = s R ot o™ L (e
Proof: Using (37), (67) and (69), we find
AY 6 —_ . . .
o @M (a) « LLUEEL 1y 4 () [14 (20 oy ()T g ()T (2]

and in view of (23)
o6 2) = (P gu(@ f2 [P 006, () - 1 (K]}

From (26), the portion in curly brackets in the latter equation is
(_)u%ém;Q)(z) . Hence the first line of (8l) is at hand. The remainder
of (81) follows from (37). The first line of (8l) coupled with the dis-

cussion surrounding equations (21)-(25) produces (82). By the confluence
principle, see [1, vol. 1, p. 50!

N+1 N+1 +
o(a) - LLLIGrEn) F[—"’—J<-N_2i"§

vt 2
riv1) 2’3 -N-l-v,v+1l,-N-1

Nt1
L) 5 o

2/2)" " (wewr2)1y () [rrowd) (e5)
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whence (83) and (84) readily follow with the aid of (33).

Error-wise, it is difficult to compare Cases I or II with Case III
without some simplifying assumptions. If n>> m , using (33), (62) and

(83), we get
[m-i] m-1 m-2
( ) 2jl 2772 42
N mtm+§ 2m+2-25+2v-m 2F3 -v= -
o2 ()" () (x+1) IF () iadtduninlld VRS
E(N)(z) r(2n+3-5+v ) {n+1-5+v)r(v+l) Io(2)Ipney(2)
(z/2)"" en
z -V
- r(2n+3'6+\)) ( ) ’ (86)
and sc Case III is superior to Case I. Now suppose m is sufficiently
large so that in (62), the second term dominates the first term. This is
certainly the case if m = 2ntl-8-d , d << n , in view of (33) and (34).
Then
(N)
G (z) o =8 =M=y )
M,V - (Z/ ) l"(m‘*\)) [l+0(n—l)] ,_1+0(m-l)]
(N) 2Km+\,(z) -
E C(z)
m,v
= (2/2)° [1+o(n71)] [ro(m-ly] (87)

and under these conditions there is little to choose between the two cases.
Overall, it appears that Case III gives better accuracy thaan Case I. How-
ever, for Case III, one must know Iv(z) while for Case I no such knowledge
is required. For all z> C and all v, 0< v < l, coefficients are
available to facilitate the rapid evaluation of J,(z) and I,(z) , see

[1, Vol. 2; 6,7 8] (Actually, much more 1nformat10n is given 1n these
sources.) All of this can often make the Case III approach rather attrac-
tive. See the numerical exsmples.

Next we consider the round-off error.

Cases I,7I, It is sufficient to trace the effect of a given round-off error
in a single entry of the table generated by the backward recursion process.
Thus let Ap be the symbol for the round-off error in ¢ . Suppose that
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AGP(N\))(Z) = 0 for m = N+2,N+1,..,, S+2 ,
m

]

( :
Anpﬁllf\),(z) =4 form = S+1 , (88) i

where S = 2s-y and y 1s O (is 1) if S is even (is odd). Hence

(N)(z) = r&sx); , M < 2s+l-y , (89)
AG(N)(Z) - we(s)(z) . (90)

For the Case I procedure, we have

M(5) (M (s)
)y P () - wn(e)
mw G(N)(z) e(N)(z) - me“‘)(z)

<{ 230 (2)0 239z i}

o(S)
(N) 0'"(z)
( )} {l -w G(N)(z)}

i

(w),,
is\))( )2 Erzl,\))( )-’
S
N Em,\)(Z)J _ e_(-s_)_iz—l (91\
B 1-y0 297 B(N)(z) ’ ’

and these equations also hold for Case 1I provided E is replaced by F .
If S= N, that is, s = n , the round-off error is nil. Indeed, this must

be since the starting value ¢N+i N is immaterial. It is clear that if
b

all parameters and 2z are fixed, then the round-off error decays to zero
as n—>»» ., For n sufficiently large with respect to 2z , Io|< 1l and
we can take |1-E(N)(z)/E(S)(z)|< 2 . Also it appears heuristically that

(s)
lEm,v(z) (92)

Ko

< Fv<z> - {2/2)"/r(v+1)
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Thus on this basis,

lAig\),(z)ls E‘wilv(z) - (z/e)v/f(w-l)! - (93)

[y

4
is an approximate bound for the round-off in a single eﬁtry‘of the set of
numbers generated by the backward recursion process. If w is the maximum

round-off error in each entry, then the total round-off error in iéfv(z) is

approximately bounded by N times the right-hand,éide of (93). Thus the
round-off error is insignificant, and it is easy to estimate the number ‘of
extra decimals which must be carried so that the total round-off error in

the process lies within the error when the arithmetic is exact. Equations
analogous to (92) and (93) for Case II are easily derived and we omit details.

1

Case I1I. We have

N,S ‘ !
/ 2 3\
va\Z)Am,v(Z) :

(N : . :
“;y”=$m%ﬂhm%wwﬁmuq ’
0,v 0,v 0,v ; | ‘ :

0%02) = ol V(0B ) - 6™y . =

Using (26), a straightforward computation shows that

hua(2) = ()% [Tosraeyru(2)onse s ()T Tomp gry(@)agronyro(z)]
Kok, (2) + (O 1ok 1
- (-)"“"lcpéi‘lg-v,vvé'ff)<z> ,m> 0,
=0,m=0 . | | (s5)
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m+Y+l (N) (N) (m- 2) ;
sz = = “Wostetyy ()‘; . (96)
! m -V 14 (z) |
oMM (o] - P
oMan @ o=

Obviously, this is nil is S =N or if m= 0O ., Now using (37), we find

i

(N), on+2s+3-§ -Y-m

, ‘P25+2-y,v(z) (z/2) r‘(v+l)1"(m+v+l)
(N) (. (W), T(2n+2-5+v)(2s+3-6+v)
qfO,\)( 'bm v( )
145 y] ras 28y +148°Y
-5 - ——L 1+==X
F[n 5 5 nts Py nts 5 22

23 . =2n-1+§ -v,28+3-y+v, -2n+2s+1+5 -y

n

n- > nt ) s =T 2

>< [ -1}, 6-1 6 : "[ m—1+8] m-1+6 m+h
I - +— 2 -
F , z>2F (

‘)

—2n-1+6 -v,v+1 5=2Nn=1+§ -2n-1+§ -v ,mtvtl,-2n-1+6+m

(97)

I

and it is clear that rounding errors are insignificant. Indeed, if all
parameters and z are fixed, then the round-off error tends to zerc as

n—)w .




FORMULAS FOR J,(z)

As previously remarked, the analyses for Iv(z) hold throughout
the cut complex z-plane, -7 < arg z < w , and throughout the cit complex
v-plane |arg v|<n , although it is sutficient to have 0 < arg z < n/2 axd
R(v) > -1 . Nonetheless, we indicate how to get results for Jy(z) directly
and to facilitate use of our findings, it is convenient to restate some of the
key equations. We omit discussion of Case II since it requires complex arith-
metic to generate Jv(z) which is real when z and v are real. 1In any
event, the reader should have no difficulty in establishing the Case II equa-
tions for J,(z) once it is observed how this is done for Case I.

All developments for J,(z) are readily gotten by use of the
equations

Lpeglze™ %) = THEVIE Gy (9%)
Ko (ze %) = drse IR ) (99)
Héiz(z) = 3. (2) 1Y, (2) (100)
m m
Yoey(z) = (=) esc w (=) cos v Jpuy(2)-0_ny(2)] (101)

vhere now in the J,(z) analyses, -n/2 < argz < n/2 .

It is convenient to introduce the following notation. Unless
indicated otherwise, if A is used to signify some function or equation
in the developments for Iv(z) , then A* is used to signify the correspond-
ing function or equation in the developments for J,(z) . In illustration

v
2

J,(z) = (2/2) oFyv+l;-2°/4) , (1)

“and both Jp,,(2z) and Yp,,(z) are solutions of the difference equation

* 2{mtuv+l * *
o y(2) = BB o0 (2) - g o2 - (21)*
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Also

nty

Iaig(z) = PRy vro(ardy (53)*
M~y

Y, (2) = - 2L pe) [ro@mY)] (34)%

mt+v w

We now present the key results pertinent to J,(z) .

Theorem 1%,
(2{22\’ ¢n(z) . " Sn(z)
J = x +tR ’ = % s 2)*
\)(z) I‘(v-{-l) hn(z) n(z) Rn(z) hn(z) ( )

where j;(z) and h;(z) are given by y,(z) and hy(z) , see (3)-(5),
provided there we replace z2 by -z2 , that is, replace X by -X .
Further, S)(z) and Sy(z) are both given by (8) and Rp(z) = (=)Rp(z) ,
see (10).

Theorem 2.% Both yp(z) and hX(z) satisfy the same recurrence formula
(11) if there we replace X by -X .

We state without proof the following equations,

(W%, (2/2)20 ™ 10 onro s +y)
¢m’v Z) [‘(m+\)+l)

m-1+5] oLt

+§ 2\

-z /. (37)*

m
s =N+

[n
>< F 2 ! 2 2
=3 -2n-1-y*5 iyt l, -2n-1+6+m

v »
6*(2) _ﬁzlél_. = :E: KEEizlELEizl J2k+v(z) . (33)* '

T(v+l) — r(vt1l)k!
o()*(5) = (2/2)10 L:rlllnll_-_a_ ha(z) . (39)
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Theorem 9.%

[ ..m——%- 1+6 _nfm- 1+6 s ..n+£1.+_6_
(N)*(2) 2 2 2

¥.,
(N) ¢m,\) 273

-2
-2n-l-vt+§ ,mtv+l,-2n-1+§+m

A e 2 e SRR P 1

I
i !

PRI, WIS

2 1

_ o myv mty
ar®) = ge - /) (n)

2
oF1 ' (-2n-1#5-v;-2°/4)

let

mx (N)

E m’\)(z) = Jm+\)(z) = jm*v(z)

N ,
where j,.(z) is given in (45)%.

Theorem 13.* If v 1is not a positive integer or zero,

2nt2
oFg('2n'l+6‘V§-22/4)E;?3*(z) , (2/2)  T(ntis+y)

\
(n*+1)!r'(2nt2-5+v) Jm‘”\’(z’lFQ(

(_)mﬁ(z/2)2n+2-6+v

= J z2)J z
= sin wr(2n+2-5+v) -n-v(2)T2nr2_+y(2)

onto_§+
n(z/2)2n §+v
T r(ent2-5t+y)

Tonto g4y (2 Ty (2)

(n/?)(z/2)€é+2-6+v

* tan v r(2n+2-5+y) Imto(2)Tonro_g4y(2) -

Equation (60)* can bte rearranged so that with the aid of L'Hospital's
theorem, we can get a representation of the error when v becomes a posi-

tive integer or zero. This result is omitted.
we always have

. (45)%

(59)*

2
.2,-n+5-vl'Z /4>

(60)*

Hovevei, for arbitrary v ,




SPUE. W

on+2
2 r(ntl-6+ 1
OF;('en'l+6'“;'22/4)Ei?3*(z) s - gﬁﬁzi)!r(2n?2-6+v;) Jm+v(z)1F§<n+2,-n+5-vI'Ze/%>
2nt2-Hty
- “ﬁ?éf}m) Jonto o2 ey (2)
ol(z/2)%%) ’ (1)s

r(2n+2-5+v)T(2n+t3-6+y)

vhere s = n5+v (¢ =) if v is (is not) a positive integer or zero.
Clearly the backward recurrence scheme is convergent. Further, for n
sufficiently large, n >> m , the relative error is essentially independent
of m . For convenience in the applications we record the formula

. ant2 _ -
) - R o o]

+2.5+
ﬂ(z/2)2n 25ty 5 (2)x (2)
T(2n+t2-6+v) ont2-8+ylZ2/imylz) .

(62)*

(V)

*
Remark: let v , n and 2z be fixed so that Ep,y (z) is a function of

m onl (M)* isfi v *
y. Then Em,v (z) satisfies the recurrence formula for ¢m,v(z) ’
see (21)*,
let
Nj* AN
6{N*(2) < dgol2) - 35N(2) (79)%
J (2 (N)*
Imro(2) = T (W)x , (80)*
®o,0 (2)
where ¢£?3*(z) is given by (37)*.
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Theorem 16.%
(m-2)*
Tonros+y(2 g, ~ (2)

(z) =
coéN3 (z)

(t-)*

) I‘(m+v)(z/g12n+2'm'6

r(2nt2-6+v)

Tonr2-s+v(2) I, n(2)

2

lm-ﬂ f-mel, m-1 _m-2

2
oFz l-v-m v+1l,1l-m

*
(z) =
Tn,n [n2: JEE
k 272

, 0<mg 2ntl-8 . (81)%

,2
-2n-1t+§ -v,vt+l, -2n-1+§ ‘ }

(N) . *
Further, (z) satisfies the recurrence formula for p4,,(z) , see (21)*,

Thus
* mtytl '
607ty = EETEL G ) L oMy I
3 n a2
oSy = 0, o) - -EI(I—N-?%’—- (82)

(z)

Finally, for convenience in the applicé.tion.,, we record the formulas
[m—l\ m-l m-2

2 z2
* (EZQ)M+4-25+2V_mI‘(m_+v) 2’3 l—v-m vtl,1-m _
(N) (2) = T(2n+2-6+v)T (2n+3-5 +v ) (v+1) ) +o(nhy],
(83)*
4n+4-25+v-m
(m)yx, . (2/2) T (mty) [1"0(m-1)l [h«o(n-l)] . (84)¥

Gm,y (2) = p(on+t2-6+v)r(2n+3-5+v)
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Let

N=5,n=3,686=1,2=2/3,v=1/3,

Values of ¢é§3(z) R e(N)(z) and Q(N)(z) are given in the table below,

(N)
nm m,v(Z)
6 1
5 19
4 305 G(N)(z) = 880 75120/81
3 3984
2 40145 a™(z) = 1 28952 97360/6561
1 2 84999
0 11 80141

Since

Y
2/3
%%Z§%7.= 0.77645 82114, & /> = 0.51341 71190 |
v

the Case I and Case II approximations are

0.84272 08930 and 0.84272 10326

L]

respectively. To 10 decimals

11/3(2/3) = 0.842772 08819 .

Thus the errors in the Case I and Case II approximations are
-7 -6
-0,111°10 and =-0.151°10 s

respectively. Using (62) and (76) each with O(n'l) and the term involving
Kh+v(z) neglected, the avproximate Case I and Case II errors are
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-0.110-10-7 and -0,149°107% |

respectively.

Again we illustrate the Case I and Case 11 schemes. We have the following
data.
(W),

n o (z)

6 1

5 6 oM(z) = o1

4 21

3 130 aM(z) = 4515

2 421

1 972 e = 7.38905 6039

0 1293

i(N)(Z)
m
m Case 1 Case II Im(z)
0  2.27986 9067 2.27972 4285 2.27958 5302
1 1.59083 4697 1.59073 3672 1.59063 6855
2 0.68903 4370 0.68899 0613 0.68894 8448
3 0.21276 5957 . 0.21275 2446 0.21273 9959
4  0.50736  4975-10" 0.50733  2755.-10"%  0.50728  5700-10-1
5  0.98199  6727-10°  0.98193  4365:10~2  0.98256  7932-10-2
6  0.1630¢  6121-10~°  0.16365 57287102  0.16001  7336-10-2
Error Relative Error
m Case 1 Case 11 Case I Case II
0 -0.284°10"3 -0.139.10"3 -0.124.10"3 -0.610-10"3
1 -0.198.10~3 -0.968.10~% -0.124.10"% -0.609-10-4%
» -0.859.10"% -0.422.10"4% -0.125.103 -0.612.10~%
= -0.260.10-4 ~0.125.10~% -0.122.10-3 -0.587.10°*
4 -0.793-106°5 -0.471-10"9 <0.156+10"3 -0.929.10-4
5 0.571-10-° 0.634-10~9 0.581-10-3 0.645.10~%
6 -0.365.10"4 ~0.364.10"% -0.228-10"1 -0.228.10~1
37

For a second example, letl

l,2=2,

v =0

e




Here the entries in the 1Ip(z) column are correct for the number of
decimals given,

Using the first lines of (62) and (76), each with O(n™l) and
the term involving Kp+,(2z) neglected, the approximate relative error
for Cases I and II, respectively, are -0.116-10"° and -0.537-10-%, respec-
tively.

In the table below, we record the approximate errors obtained by
use of (62) with O(n’l) omitted for m =6 and 5 and by use of (21), see
the remark following Theorem 13, for the lower values of m . This is
called Case I, (62)-(21) in the table. We alsc present the analogous Case II,
(76)-(21) data. In each instance known tabular values of K, (2) and 17(?)
were used. In practice, we suggest using (34) or the lead term of the
uniform asymptotic expansion of Kyi,,(z) developed by Olver [9]. For
12n+2-6+v(z) , use (33) or the lead term in the uniform asymptotic expansion
for this function which is also given in the source just cited. We also

suggest that computation of the gamma functions be simplified as follows.
With |R(a)l< 1 and r a positive integer, we have

M(r+a+l) = ri rl"(x-f-l) = rir’ [l+0(r'l)]

and for r sufficiently large, we neglect O(r~l) . The approximation is
of course superfluous if o =0 . If g =% % , the approximation may still
be used though known tebles of the gamma function for half an odd integer
may be preferred [10]. If more precise values of the gamma functions are
required, see hl].

Approximate Error

m case I, (62)-(21) Case II, (76)-(21)
0 -0.264+10"3 -0.114.10-3
1 -0.184.10°3 -0.765-.10-4
2 -0.797-10°% -0.373.10~4
3 -0.242.10~4% -0.110.10-4
4 -0.723.107° -0.410.10-5
5 0.475.10™° 0.536.10~°
6 -G.310.10~4 -0.309.10-4

For a final example, we 1llustrate Case III using the data of our
second example. We get the following numbers.

38



S

!
§
3
E
:

5(N)(z> G(N)(z) Approximate Error

m n mty (82)-(83) (84)

0 2.27958 5302 0 0 0

1 1.59063 6693 0.162-10-6 0.121.10-6 0.276-10-6
2 0.68894 8609 -0.162.10%6 -0.121-10-6 -0.276.10-6
3 0.21273 9475 0.484-10°6 0.363.10-6 0.551.10-6
4 0.50730 1826-107% -0.161.10"2 ~0.121.10°5 -0.165.107°
5 0.98187 4502.10"2 0.693.10°° 0.520.10-5 0.661-10~°
6 0.16364 5750.10~2 -0.363.10~% -0.272.10-% -0.331.10-%

In the above, the approximate error (82)-(83) means that GSE{(Z) is

approximated by (83) with m= 1 and 0(n-!) neglected, and subsequent
approximate values of the error are found by use of the recursion formula
in (82). Use of the recurrence formula in this fashion is stable as the
magnitude of the error isgan increasing function in m . Also Eq. (84)
means this equation with O(m~l) and O(n'l) neglected.

A measure of the accuracy of th: three schemes treated cen be had
by use of normalization relations, Thus if the Case III procedure is employed,

then (38) and (46) with Iy+,(z) replaced by iﬁyg(z) are available as
checks. Similarly, equations (46) and (38) are available as checks for the

Case I and Case II techniques, respectively. For some other useful normali-
zation relations, see [I, Vol. 2, pp. 45, 46].

Analyses of the error in the backward recursion process for the
solution of a general second and higher order linear difference equation
have been given by a number of authors. Some authors have studied the
case of Bessel functions directly. We make no attempt to survey the various
contributions here. Pertinent references are given by Wimp [4]. Suffice it
to say, none of the analyses have the precision and simplicity of those
developed in the present paper. We deliberately chose N and as & conse-
quence n small (N=5,n=3) in our numerical examples to put our asymptotic
estimates under a severe test. The efficiency and realism of our error
formulas is manifest.

CONCLUDING REMARKS

It appears that the techniques developed here for the Bessel func-
tion Iv(z) can be exterded to analyze more general second and higher order
difference equations. In particular, it would be useful to have analogous
results for oFy(a,bjc;z) and its confluent forms. This we intend to do
in future papers.
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